Robotics can revolutionize the delivery of medical care

Robotics has the potential to revolutionize the delivery of healthcare. It can help extend the delivery of information, expertise and clinical care across time and geographical space barriers. Robotics offers the opportunity to enhance quality of care through extension of clinical expertise and leveraging of integrated datasets and best practices. It can be used across the continuum–from the hospital setting (e.g. OR, ER, etc.) into primary care offices and even into the home.  And, robotics offers opportunities for telementoring, training, and education using a combination of robotics and telemedicine. Here are some of the major uses of robotics in clinical medicine today. 

Robotic surgery

Only one surgical robot is currently commercially available – daVinci. It has found wide interest and acceptance by many surgeons especially for prostate surgery, cardiac surgery and gynecologic surgery. Most institutions indicate that the combination of initial price, annual maintenance fees, training time, and other costs make for either a very long pay back time or, more often,  never achieving  a return on the investment. Truth is that many hospitals purchased their robot as a marketing ploy and it sits idle in the corner much of the time – not good medicine since it needs to be used extensively for a surgeon to be really competent. Otherwise, better to do the surgery the old fashioned way.

However, the promise of robotic surgery includes a number of advantages. Among them are leveraging the particular strengths of computers such as tremor- filtered precision (i.e., it removes the surgeons hand tremor) and repeatability to enhance the capability of the average surgeon.  It can import data from imaging devices and others devices in the operating room for information augmentation.  It can reduce the occupational environment hazard for surgeons by removing the surgeon (and other OR personnel) from biohazards, for example, radiation exposure since the surgeon sits at a console some distance from the patient.  It can enable extension of surgical care into geographically remote areas via telesurgery, including battlefield situations for the military.  It is indefatigable, that is it does not get tired by a long procedure and does not develop back pain from leaning over the operative site. The surgeon can set pre-specified “no fly zones” — protective algorithms can be inserted into the software to prohibit undesirable motion such as getting too close to a critical nerve during prostate surgery.

Combined, these attributes allow for integrating patient specific data before and during the procedure; allowing for less invasive surgery as with coronary artery bypass surgery; more accurate surgery such as with craniotomies; the ability to pre-plan and rehearse surgery or at least certain complex segments of the planned surgery; and it can have the advantage of built-in alerts and detectors.

Robotic surgical scrub assistant

“Penelope” has been developed at Columbia University by general surgeon Dr Michael Treat with funding from the US Army’s Telemedicine and Technology Research Center, in Fort Detrick MD. Penelope has four fundamental parts: A robotic arm with an electromagnetic gripper that can select instruments from the back tray and arrange them on the stand and then hand them to the surgeon on demand; the instrument platform which is a set of sterile horizontal surfaces where Penelope stores her instruments; the system stand which is an adjustable wheeled cart which holds both the  instrument platform and the robotic arm; and the system control software which includes the ability to use speech recognition to respond to the surgeon, vision so as to see the surgical instruments, motion control to move the arm, and speech generation to give Penelope a voice to respond to the surgeon. It has proven to be effective in assisting the surgeon and could well save substantial sums of money in the OR. It is not yet commercially available.

Robotic pharmacy assistance

Three types of hospital-based pharmacy robots are commercially available:

Solid medication or “pill” dispensers – these robots stock their own storage area using bar-coded medication containers. They then prepare a patient’s daily “drawer” of medications based on the pharmacy information system [ideally driven in turn by a CPOE physician ordering system]. The advantages are speed and accuracy (and hence improved quality of care and improved safety) while freeing up pharmacist and pharmacy technician time for other more cerebral functions.

Liquid medication preparation – these computer-assisted robots select a vial, add the diluent, remove the prescribed dosage into a syringe or add it to an intravenous infusion bag. Driven by a hospital-based CPOE and pharmacy information system, they save time, increase accuracy and free up both pharmacist and pharmacy technician time for high level functions. It is also one more step toward higher quality and safer medication distribution.

Robotic delivery of medication drawers to individual hospital nursing units – these robots, sort of like “R2D2, are loaded with the patients’ medication drawers and are sent by command to individual nursing units using battery operated locomotion. The robot can “call” an elevator wirelessly and likewise indicate the proper floor for the elevator to go to. Upon reaching the nursing unit, it announces that “I have medications for you” for nurse removal before moving on to the next unit of the hospital. Among its advantages are efficiency, speed of delivery of critical medications to units and freeing up time for pharmacy personnel. It allows the pharmacy technician or the nurse that previously had to deliver the medications to do more useful work and at the same time get the medications to the unit in a short time frame.

Robotic physician-patient interaction devices

The increasing complexity of healthcare and shortage of clinical specialists needs to be addressed through communication, collaboration and coordination of resources to ensure timely delivery of clinical expertise.  The ability for a physician to “be at two places at the same time” is an intriguing notion and is now a reality.  One of the robotic systems that enable this new paradigm is the commercially available Remote Presence device from InTouch with other similar concepts under development.  The Remote Presence device combines the power of robotics, wireless, and the internet to bring physicians and patients together over the spectrum of distance and time. It has wide-ranging mobility on both ends of the interaction, the ability to be fully controlled by a remote operator (the physician), the quality of its two-way audio-visual system, the user-friendly interface design, and the software architecture which allows connections from anywhere with internet access.  This system enables healthcare professionals to provide high quality clinical expertise to both patients and hospital staff in a more timely and efficient manner than was ever previously possible.  The benefits include geographical reach of scarce medical experts, improved patient safety and outcomes, capacity management and efficiency, enhanced physician and patient satisfaction and availability of clinical mentoring, training and education along with telementoring.

Computer-assisted or “robotic” surgery has important potential implications for military but also civilian medicine when combined with distance medicine technologies for delivery of specialized surgery. It has proven itself in mainstream surgical situations although the limit of only one manufacturer has reduced innovation and options and maintained a high price. The robotic scrub assistant has potential utility. The pharmacy robots are in relatively wide use. The robotic physician-patient interaction devices can also be of real value for bringing expertise to anywhere needed despite the location of the physician. They have the capability to enable expert physicians to connect into a robot in the OR or angiosuite and essentially be “present” during a procedure to provide real-time mentoring.

All of these technologies can increase efficiency and quality, reduce errors and improve patient care. Some can reduce personnel time and thereby reduce costs, but all require substantial personnel experience and training. Many are now commercially available. They are certainly major innovations and will likely be quite disruptive of how medical care is currently delivered.

Robotics can revolutionize the delivery of medical careStephen C. Schimpff is an internist, professor of medicine and public policy, and former CEO of the University of Maryland Medical Center.  He consults for the US Army (where this material was first developed), medical startups and Fortune 500 companies, and is the author of The Future of Medicine — Megatrends in Healthcare and blogs at Medical Megatrends and the Future of Medicine.

Submit a guest post and be heard on social media’s leading physician voice.

email

Comments are moderated before they are published. Please read the comment policy.

  • Shannon Brownlee

    I think this blog overstates the case for robotics. Take the case of the DaVinci surgical robot, which is commonly used for prostatectomy, surgical removal of the prostate. Men who choose the robot versus open surgery believe that they will have better results — shorter recovery, less bleeding, impotence, and incontinence, and the same outcome in terms of their prostate cancer. But that’s not the case. The learning curve to become proficient on the robot is about 1,000 surgeries for urologists. I’d hate to be Mr. 193. Even when surgeons are proficient, there is a higher incidence of re-operation for robot prostatectomy than open surgery and little to no difference in incontinence and impotence, two outcomes that matter a great deal to men.

    Perhaps practice will make perfect and robotic prostatectomy outcomes will improve with time, but it is taking more time to get to that point than, say, laparascopic cholecystectomy, which had a higher mortality rate than open surgery when it first came on line, but now has a lower rate as surgeons gained proficiency. My biggest worry about robotic prostatectomy is it will lower the bar for prostatectomy in the first place, just as the lap chol lowered the bar for doing elective cholecystectomies. The thinking among surgeons has become, “A lap chol is easy, safe, why not do it now, when the patient is younger and healthier and we can prevent another gall bladder attack down the road.” Only in the case of robot prostatectomy it isn’t easier or safer. Nor does it offer better outcomes.

  • Shannon Brownlee

    I think this blog overstates the case for robotics. Take the case of the DaVinci surgical robot, which is commonly used for prostatectomy, surgical removal of the prostate. Men who choose the robot versus open surgery believe that they will have better results — shorter recovery, less bleeding, impotence, and incontinence, and the same outcome in terms of their prostate cancer. But that’s not the case. The learning curve to become proficient on the robot is about 1,000 surgeries for urologists. I’d hate to be Mr. 193. Even when surgeons are proficient, there is a higher incidence of re-operation for robot prostatectomy than open surgery and little to no difference in incontinence and impotence, two outcomes that matter a great deal to men.

    Perhaps practice will make perfect and robotic prostatectomy outcomes will improve with time, but it is taking more time to get to that point than, say, laparascopic cholecystectomy, which had a higher mortality rate than open surgery when it first came on line, but now has a lower rate as surgeons gained proficiency. My biggest worry about robotic prostatectomy is it will lower the bar for prostatectomy in the first place, just as the lap chol lowered the bar for doing elective cholecystectomies. The thinking among surgeons has become, “A lap chol is easy, safe, why not do it now, when the patient is younger and healthier and we can prevent another gall bladder attack down the road.” Only in the case of robot prostatectomy it isn’t easier or safer. Nor does it offer better outcomes.

  • Anonymous

    Your points are well taken. For sure, the surgical robot – DaVinci – should only be used by someone who is expert, meaning extensive experience. As I wrote in the post, “Truth is that many hospitals purchased their robot as a marketing ploy
    and it sits idle in the corner much of the time – not good medicine
    since it needs to be used extensively for a surgeon to be really
    competent. Otherwise, better to do the surgery the old fashioned way.” 

    But for the expert who uses it extensively the robot can offer the advantages I listed such as tremor abatement, good ergonomics, and “no fly zones.”

    I happen to believe, as I gather you do, that the robot is overused by all too many surgeons with too little expertise. This has been compounded by hospitals that rushed to buy a robot mostly so they could market themselves as “up-to-date.” They quickly learned that there was no return on investment when it went mostly unused. Like any good technology, the DaVinci surgical robot is only as good as the person (or team) who uses it.

    • Shannon Brownlee

      oops, didn’t mean to post twice.

      In reply to your reply, we are in agreement that many hospitals bought a DaVinci  as a marketing tool — and a bought device needs to be a used (and reimbursed for) device in order to get a ROI. Also agreed it’s important that devices be used by skilled teams.

      But my point was a little different: even skilled surgeons don’t get better outcomes from a robotic prostatectomy compared with open surgery. The assumption has been that of COURSE the robot would be better — its less invasive, the recovery time is shorter. But the reality is in this case the robot is not as good as the surgeon’s hand. (i’m told part of the problem is you can’t see what you’re doing during a crucial cut — and you can’t see if you’ve gotten an intact prostate out because you extract it in a little bag, like a hotdog.) So there is a higher rate of re-operation because in trying to avoid cutting nerves, surgeons instead err on the side of leaving a little prostate behind. PSA begins rising, and the poor guy has to get cut again.

      But the more important and more subtle point here is when we are dazzled by technology, we often forget to ask the question whether or not the surgery is the right thing to do in the first place. When patients are led to believe that the technological solution is safer, quicker, better, they aren’t getting the full story. I have yet to hear from a man who got robotic surgery who understood the true odds of harm and made the choice with a clear understanding that the only potential benefit to a robotic surgery versus open (never mind whether he was fully informed about his choices of not having surgery at all) was he might be able to get out of bed a little sooner and bleed a little less.

  • Anonymous

    Robotic surgery has been shown to be excessively costly with marginal improvement over regular doctor performed surgery.  Use is limited to a “friendly environment” which can tweak on the go.  Outside the friendly environment it is subject to glitches without support fixes.

    The cost is over 100 times the cost of doctor performed surgery.

    Pharmacy robots are most likely best because the pills can be in same place all the time and picked to order on a routine basis.

    A think tank in Washington did a study on robotic surgery and concluded it was overly marketed.  The fact it sits in the corner means it is too much trouble to create the friendly environment on a regular basis.

    Some doctors like it but again too much trouble to get set up and the special team needed – only one not at work will stop the procedure.

  • http://pulse.yahoo.com/_JYZSGDUXTNSTJUV5WJB3ZIY23M terminator

    i will quit surgery the day robotics step in. if my hands tremble, i will know it is time to retire………and, so far, it is not proven that there any different positive outcomes using the DaVinci!
    a robot could also jam and have electrical problems and more. how does one intervene on that one? also as reported by by tallywhacker….where is the cost going?
    i am a flight surgeon and have performed hundreds of surgeries by my own skill. will i be able to bring a robot on board where there is no power, water and more?????
    please, let us use our knowledge and skills learned from years of school and practice…………one more question—-if a robot goes on the brink, would we call another robot to fix it????

Most Popular